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SECTION I

SUMMARY OF PROGRAM

PROGRAM OBJECTIVES

To develop practical, low cost, real-time methods for suppressing noise

which has been acoustically added to speech.

To demonstrate that through the incorporation of the noise suppression

methods speech can be -ffectively analysed for narrow band digital

transmission in practical op-ratinq environments.

SUMMARY OF TASKS AND RESULTS

TN'ITDUCTION

rn Section H th- key research efforts of the program are summarized.

In Section IV, three recont t, chnictil papers are presented. Section V lists

the major publications generated .ider this contract.



SECTION II

SUPPRESSION OF ACOUSTIC NOISE IN SPEECH USING
SPECTRAL SUBTRACTION

I. INTRODUCTION

Background noise acoustically added to speech can degrade the

performance of digital voice processors used for applications such as speech

compression, recognition, and authentication [1]. The effects of background

noise can be reduced by using noise-cancelling microphones, internal

modification of the voice processor algorithms to explicitly compensate for

signal contamination, or preprocessor noise reduction. Noise-cancelling

microphones, although essential for extremely high noise environments such as

the helicopter cockpit, offer little or no noise reduction above 1 kHz [1].

Techniques available for voice processor modification to account for noise

contamination are being developed [4]. Preprocessor noise reduction offers

the advantage that noise stripping is done on the waveform itself with the

output being either digital or analog speech. Thus, existing voice processors

tuned to clean speech can continue to be used unmodified. ilso, since the

output is speech, the noise stripping becomes independent of any specific

subsequent speech processor implementation (it could be connected to a CCD

channel vocoder or a digital LPC vocoder).

The obioctives of this research were to develop a noise suppression

technique, implement i computationally efficient algorithm, and test its

performance in actual noise -nvironments. The approach used was to estimate

the magnitude frequency spectrum of the underlying clean speech by subtracting

the noise magnitude spectrum from the noisy speech spectrum. The average



noise magnitude was measured during nonspeech activity. The noise suppressor

is implemented using about the same amount of computation as required in a FFT

convolution. It is tested on speech recorded in a helicopter environment.

Its performance is measured using the Diagnostic Rhyme Test (DRT) [6].

SIGNAL II. ESTIMATION USING SPECTRAL SUBTRACTION [31, [4]

Signal x(i) digitized from a single microphone consists of the sum of

speech Sp(i) and ambient acoustic noise n(i). It is assumed that the noise is

locally stationary to the extent that average value of its spectral magnitude

during speech activity is equal to that measured just prior to speech

activity. Using these assumptions the spectral subtraction algorithm attempts

to suppress the additive acoustic noise component n(i) from x(i) by the

following steps:

1. Segment the noisy data into windowed analysis blocks of length M

samples, x(i),i=0,l...,M-l.

2. Compute the N oint DFT X(k) of data x(i).

3. Estimate the speech spectrum S(k) by subtracting the average noise

spectral magnitude, B(k) = avelN(k) , calculated during non-speech activity,

from 1X(k) 1:
5(k) = fIX(k) 1-9(k) exp (j ARGIX(k)I)

The motivation behind this approach is to subtract from the noisy

speech spectrum, an estimat, of the noise spectrum which is readily available.

The magnitude of N(k) is rplaced by its average value, B(k), and the phase of

N(k) is replaced by the phase of X(k).





use of an improved noise cancellation microphone.
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severe noise environments. Finally the processing time of frequency domain

FORTRAN algorithm was approximately 3 1/2 time faster than the UL1S FORTRAN

algorithm as predicted due to the efficiency provided by the FFT.
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TOWARDS A MATHEMATICAL THEORY OF PERCEPTION
James Kajiya

ABSTRACT

A new technique for the modelling of perceptual systems called formal

modelling is developed. This technique begins with qualitative observations

about the perceptual system, the so-called perceptual symmetries, to obtain

through mathematical analysis certain model structures which may then be

calibrated by experiment. The analysis proceeds in two different ways

depending upon the choice of linear or nonlinear models. For the linear case,

the analysis proceeds through the methods of unitary representation theory.

It begins with a unitary group representation on the image space and produces

what we have called the fundamental structure theorem. For the nonlinear

case, the analysis makes essential use of infinite-dimensional manifold

theory. It ber ins with a Lie group action on an image manifold and produces

the fundamental structure formula.

These techniques will be used to study the brightness perception

mechanism of the human visual system. Several visual groups are defined and

their corresponding structures for visual system models are obtained. A new

transform called the Mandala transform will be deduced from a certain visual

group and its implications for image processing will be discussed. Several

new phenomena of brightness perception will be presented. New facts about the

Mach band illusion along with new adaptation phenomena will be presented.

Also a new visual illusion will be presented. A visual model based on the

above techniques will be presented. It will also be shown how use of

statistical estimation theory can be made in the study of contrast adaptation.
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Furthermore, a mathematical interpretation of unconscious inference and a

simple explanation of the Tolhurst effect without mutual channel inhibition

will be given. Finally, image processing algorithms suggested by the model

will be used to process a real-world image for enhancement and for "form" and

texture extraction.

Kuhl..
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A CONSTANT PERCENTAGE BANDWIDTH TRANSFORM
FOR ACOUSTIC SIGNAL PROCESSING

James E. Youngberg

ABSTRACT

This paper describes a constant percentage bandwidth transform for

acoustic signal processing. Such a transform is shown to emulate behavior

found in the hunin auditory system, making possible both the imitation of

peripheral auditory analysis, and processing which is more closely linked to

perception than is possible using constant bandwidth analysis.

To enable such processing, a synthesis transformation is developed

which, when cascaded with the analysis transformation, provides an

analysis-synthesis identity in the absence of spectral modification. Various

properties of the transform pair are derived, and a filterbank analogy is used

to create a basis for intuitive understanding of the transform's operation and

properties.

The effects of spectral domaii modification are described and shown to

be related to the properties of the analysis window function.

Principles governing discrete implementation of the transform pair are

discussed, and relationships are formalized which specify the sampling of the

spectral domain. These relationships are shown to depend simultaneously on

-he analysis window function and the selectivity (or 0) of analysis. An

alternative form of the synthesis is given which facilitates a more nearly

optimal logarithmic sampling of the spectral frequency axis. A minimal

sampling pattern is given for the spectral domain which has an overall rate

equivalent to the rate necessary to sample the constant bandwidth spectral



domain.

The nature and computation of the constant-Q spectral magnitude and

phase function is discussed, and three main methods are evaluated whereby the

spectral phase may be unwrapped.

Fine resolution constant.-Q :;,-crroNrams are presented which show

clearly the properties of -ontant-Q analysis -3pplied to speech.

The Use of the tranform peris discussed in the solution of the

perceptiton -r(elatod problem of t imo 2c1e(ompross ion and expansion of speech.

Results of this experiment -ir- discuicsed.

Finally, suggestions for further research and applications are

r,resented.
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ACOUSTIC SIGNAL PROCESSING IN THE CONTEXT
OF A PERCEPTUAL MODEL

Tracy Lind Petersen

ABSTRACT

The perceptual analysis of acoustic waveforms by the auditory system

involves both mechanical and neural transformations of the stimulating signal.

Therefore, a distinction exi3ts between the stimulus space as characterized by

acoustic vibration, and the auditory perceptual Soace as characterized by

perceptually transformed acoustic signal information. This dissertation

explores acoustic signal processing within the domain of auditory perception,

beginning with the formal development of an integral transformation which can

simulate certain frequency ;el-ctive properties of the auditory system.

7\ paramoterized family of analysis-synthesis transform pairs which

behave as identities in the absence of perceptual modification is developed

from a property of homogeneous functions. A aarticular member of the

transform family is then implemontod to simulate frequency selective

properties of th(, peripheral auditory system. Frequency sensitivity typically

found in fibers of the axditory nerve is also modeled.

Following this, an ability of the auditory brain to suppress the

perception of background noise is simulated, based on a mathematical model of

loudness perception. This method of noise suppression, called "perceptual

subtraction"' is applied to the noise suppression processing of signals

corrupted by additive noise. The signal processing results give empirical

support to a theory which has been put forward to explain loudness processing

by the brain.



SPEECH ARTICULATION RATE CHANGE USING RECURSIVE
BNDWIDTH~ SCALING

H. Ravindra

ABSTRACT

Speech articulation rate change is done by analyzing the speech signal

into several frequency channels, scaling the unwrapped phase signal in each

channel and synthesizing a new speech signal using the modified channel

signals and their scaled center frequencies. It is shown that each channel

signal can be modeled as the simultaneous amplitud-e and phase modulation of a

carrier and that only scaling the phase modulating signal does not result in a

proportional scaling of the bandwidth of the channel signals which results in

the introduction of different types of distortions like frequency aliasing

between channels when an increase in the articulation rate is attempted and

reverberation when a rate reduction is attempted. It is proposed that the

amplitude modulating signal bandwidth should also be scaled and a recursive

method to do this is discussed.
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ESTIMATION OF THE PARAMETERS OF AN AIJIDRF(RESSIVE
PROCESS

IN THE PRESENCE OF ADDITIVE WHITE NOISE

William J. Done

ABSTRACT

Applications of linear prediction (LP) algorithms have been successful

in modeling various physical processes. In the area of speech analysis this

has resulted in the development of LP vocoders, devices used in digital speech

communication systems. The 12 algorithms used in speech and other areas are

based on all-pole models for the signal being considered. With white noise

excitation to the model, the all-pole LP model is equivalent to the

autoregressive (AR) model.

With the tne success of this model for speech well established, the

application of LP algorithms in noisy environments is being considered.

Existing 12 algorithms perform poorly in these conditions. Additive white

noise severely effects thr intelligibility and quality of speech after

analysis by an LP vocoder.

It is known that the addition of white noise to an AR process produces

data that can be described by an autoregressive moving-average (ARMA) model.

The AR coefficients of the ARMA model are identical to the AR coefficients of

the original AR process. This dissertation investigates the practicality of

this model for estimating the coefficients of the original AR process. The

mathematical detaiis for this model are reviewed. Those for the

autocorrelation method LP algorithm are also discussed.

Experimental results obtained from several parameter estimation



techniques are presented. These methods include the autocorrelation method

for LP and a Newton-Raphson algorithm which estimates the ARMA parameters from

the noisy data. These estimation methods are applied to several AR processes

degraded by additive white noise. Results show that using an algorithm based

on the ARMA model for the data improves the estimates for the original AR

coefficients.
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form of the beta density function. The parameters a,b, in the following

expression for Hp, were fixed experimentally to set both the Q and the skirt

slopes of the filter. For Fourier frequency variable v, position frequency

Rp(w), and parameters a,b,

va[(b+a)/a] R-(w)-v}b

(bla) b Rp(W)a~b+p

Hp1Rp(w),vl = for O<v<(b+a)/a RP(w) (8)

30, otherwise.

In a discrete implementation, a finite set of position frequencies may

be determined by evaluating Rp(w) for discrete values of w. Based on the data

of Wever [61, Zwislocki [71 derived a relationship between critical bandwidth

and the density of neurons which connect with sensory cells of the inner ear,

located along the basilar membrane. This relationship suggests that 1300

neurons approximately correspond to an interval of one critical band, and that

critical bands represent uniform distance increments along the basilar

membrane.

Uniform spacing on the basilar membrane corresponds to an exponential

spacing of frequency measured in Hertz [81. Thus, the position frequency

function

RP(W) = exp(w)

is chosen which, from lemma 1, property 4), gives p=O. Discrete position

frequencies of filters in the constant-Q filterbank are then given by the set

Ro(W i ) = exp(wi ) , i=l,N.

whiere

wi-wi_, = (WN-W I ) /(N-I) .
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Substituting these discrete values of R0(w) into equation 5 gives

F[exp(wi),t] = exp[-j exp(wi)t]

X ;F(v) H0 [exp(wi),v] exp(jvt) dv/2n

i=l,N, (9)

which specifies the constant-Q transform at the N analysis frequencies

exp(wi ) , i=l,N.

For this implementation, total signal bandwidth was limited to 4 kHz.

Position frequencies were initially selected over 50 positions from exp(wl)=40

Hz to exp(w50 )=3900 Hz,

Because the Q of critical bandwidth drops off toward lower frequencies,

the wider bandwidths in this frequency region may be achieved by summing small

groups of filters from the constant-Q bank. By interactively summing groups

of low frequency filters and measuring the resulting bandwidth, the 50 filters

of the constant-Q bank described above were reduced to only 23 filters which

closely conform to critical bandwidths. The resulting critical band filterbank

is plotted in figure 1, where filters 1 through 6 have been normalized to 1.

It can be shown 141 that summing these filters results in an overall frequency

response which has a passband ripple of 0.2dB.

SUMMARY

Through the design of transformations which relate acoustic signals to

their critical band representations, we create a means for relating signal

modifications to perceptual criteria. Thus signal processing in the critical

band domain may be evaluated in the stimulus domain through the combined

process of reconstruction and listening to the processed signal. Additional

work in the processing of critical band signals has been conducted by the
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authors[9] where time-varying modifications to critical band intensities are

performed to improve perceived signal-to-noise ratios.
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ACOUSTIC NOISE SUPPRESSION IN THE
CONTEXT OF A PERCEPTUAL MOrDEL

Tracy L. Petersen
Steven F. Boll

ABSTRACT

An acoustic noise suppression algorithm has been developed which

suppresses noise from speech by first filtering it into a set of signals which

approximate Wte loudness components perceived by the auditory system. These

signals are generated by passing the input stimulus waveform through a filter

bank with frequency bandwidths which approximate the ear's critical

bandwidths. The noise on each signal is then suppressed using spectral

subtraction techniques in a domain of simulated perception. This approach to

noise suppression retains the intelligibility produced by spectral subtraction

methods while eliminating the accompanying musical quality.

INTRO~DUCTION

The work to be described explores acoustic signal processing within the

domain of perception. Such an approach requires both a knowledge of auditory

system signal processing transformations, and adequate techniques for their

simulation. Given a capability to mao acoustic signals into the domain of

perception and process this transformed information to suppress perceived

ievels of background noise, the processing must be followed by inverse

transf or-mat ions which return perceptually processed signals to an acoustic

signal representation. This approach is initiated from a signal processing

framework which is based on a mathematical model of peripheral auditory

frequency analysis. Mathematical formulations for loudness perception and the

selective identification of a tone in noise are implemented to suppress noise

loudness as ttie simulated function of auditory brain activity. The brain's

ability to concentrate upon signal components while ignoring the loudness of
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background noise is described as an operation of selective listening. Each

stage of the mathematical modeling is invertable. Thus it is possible to

estimate processed signal intensities which in theory simulate the perception

of signal loudness without imposing a need upon the brain to invoke the

operation of selective listening in order to suppress the loudness of a

masking background noise.

PERCEPTUAL SUBTRACTION OF NOISE

Critical Band Filtering

Peripheral auditory analysis of the ear may be likened to a bank of

bandpass filters. The filters which form this auditory filter bank are called

critical bands (1]. In this work we use the critical band analysis-synthesis

method as given in (2, 31 This method simulates the critical band frequency

analysis of the auditory periphery, while an inversion formula allows this

signal to be reconstructed from its critical band filter bank analysis

representation. Analysis over a 4kHz bandwidth was performed with a bank of

23 critical band filters.

Auditory Threshold and Masking.

in audition the term "masking" is used to describe the situation where

the loudness of a particular sound partially or completely obscures from

perception a second sound. The masking sound is said to induce a threshold

shift in signal detectability.

It is known that the threshold intensity of a pure unmasked tone varies

as a function of tone frequency. Some workers have suggested [4] that the

frequency dependent threshold shifts outside the minimum threshold region may

be modeled as t e result of internal masking which is inherent in the

mechanisms of the auditory system itself. This approach proves to be useful
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in modeling loudness perception as discussed in the remaining sections of this

paper.

Loudness Perception

It is known that strong compressional mechanisms within the auditory

system transform a stimulus intensity range of roughly twelve orders of

magnitude down to a subjective rame- of aoproximately three or four orders.

Stevens has shown [5] that loudness perception tends to be a specific

mathematical function of stimulus intensity. If loudness is designated L, and

stimulus intensit' 1, then

L = b I (1)

Equation I gives the relationshin which Stevens called the psychophysical

power law. It shows loudness to be a simple power function of intensity.

Hellman and Zwislocki [6] determined a value of the exponent to be 0.27.

A Model for Selective Listening

It is important to note that the critical band is an interval over

which the ear integrates energy. Threshold elevation induced by an external

masking noise is proportional to the noise energy within the critical band

associated with the masking [7]. Zwislocki [4] has formulated an expression

for loudness perception oier critical bind intervals which put !In additional

interpretation upon the power law described in the previous section.

Zwislocki reasoned that loudness perception could be represented

mathematically in terms of the phenomenon of selective listening which is

implicit in psychophysical masking experiments. Selective listening refers to

the ability of a listener to selectively observe either the loudness of signal

and noise, the loudness of signal, or the loudness of noise when signal and

noise are presented simultenoously. It is the ability of the ear to perform



selective listening tasks that makes possible the measurement of loudness

functions under masking[8]. Zwislocki theorized that selectively listening to

a tone in noise required a subtraction of noise loudness from total loudness

within the domain of perception.

In a masking situation the critical band contains the intensity I of

the signal, and the intensity E of an externally presented masking noise.

Here, as discussed earlier, absolute threshold is modeled as a masked

threshold shift due to an internal masking intensity. M. Scharf [9] shows that

the intensity M is 4 dB above the absolute threshold for a tone at critical

band center frequency. According to the power law the summed intensities

produce a total critical band loudness

Lt = b(I+E+M)O (2)

where b is a constant which depends on choice of units. To obtain an

expression for the loudness of the signal in noise within the critical band

the selective listening hypothesis is invoked to subtract off loudness due to

the masking intensities. This gives the loudness of the siqnal Ls to be

Ls  b[(I+E+M)o - (E+M)6] (3)

At this point it is assumed the brain has performed its selective listeninq

operation, and in concentrating on the signal, perceives the critical band

loudness Ls.

Input/Output Transformation

What is desired now as a processing qoal is a stimulus domain

representation of signal intensity which would induce the perception of

loudness L. while suppressing the perception of loudness due to the external

masking noise. The following is a derivation of an input/output
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characteristic which yields the desired intensity. Ls is first equated with

the loudness Ls that would be produced by some unmasked stimulus of intensity

J. An input/output characteristic is then derived which gives J in terms of

signal intensity I, external noise intensity E, internal masking intensity M,

and psychophysical power exponent e. Because Ls is unmasked, the expression

for L. in terms of J nas zero external noise intensity, and by definition

Ls = b[(J+M) 0 
- MOh. (4)

"iht cquality of equation:- j, and 4 tnen gives

b[(J+M)'' - MC] : b[(I+E+-M) 0 - (E+M)V]

(J+M)O = [(I+E+M)o - (E+M)o ] + Mt

j = [(l+E+M)e - (E+M)T] + MO}l/) _. (5)

This new signal intensity J Is one which in theory stimulates the perception

of signal loudness L,. without ir..npsing a need upon the brain to invoke the

operation of selective listning in order to suppress the loudness of the

external masking noise.

SIRiAL PROCESSING IMPLEMENTATION

Critical Band Signal Generation

The processing of loudness information re-quires the computation of

intensity for each 13, 2] critical band in the analysis transform filterbank.

For tnls implementation each critical band filter is real, zero over negative

frequenvces, and therefore has a complex time response.

Given a critical band filterbank composed of N filters, the kth

critical band filter operates on a real input signal f(t) to produce a complex

bandpass time slinal. The time varying intensity, Zk(t) within the ith

critical band is taken as the square of the instantaneous amplitude of the
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complex signal.

The perceptual subtraction of noise as represented by equation 5

assumes that the noise is stationary and that the expected value of noise

intensity within each critical band is known. Critical band noise intensity

estimates were obtained by performing critical band analysis over noise only

time intervals. For critical band k the expected noise intensity Ek was

determined as a long-time average of the squared instantaneous envelope.

Noise Suppression

The critical band intensity Zk(t) is duo to both signal and noise.

Given that Jk(t) is the processed intensity at the kth critical band, equation

5 then takes the form

t-(+MO m I 1/0Mk (6)

Jk(t) = t(Zk(t)Mk) -(Ek+Mk) , -k k(

Equation 6 defines the process of spectral subtraction in the perceptual

domain as motivatoi ry tne simulation of selective listening. Critical

filterbank Analysts is applied to f(t) , producing N complex time signals.

Instantaneousns ?k(t) arc, computed and each are processed according

to equation 6 to create a new critical band intensity Jk(t). The appropriate

inverse operations are then performed and the N channels are summed to form

the output speecn.

SUMMARY AND CONCLUSIONS

The success of this work both follows from and contrasts work by others

using spectral subtraction 110). The parallel botween the method of

perceptual subtraction and the method of spectral subtr-it ion is that in both

cases noise estimates arc locally subtracted out in a transformed signal

space. In the case of spectral subtraction this transformed signal space is















40

manner by a B-spline function given by{ ciB i(w), w > 0

Z_ civs,(-W), otherwise,
(-0

where the ci  xi + J yi are complex valued parameters. We desire to minimize

the e-ror E wnen defined in the standard least squares sense as follows.

E =-SS(w)-S(w)12 (2)

The parameters are determined by minimizing E in (2) with respect to each of

the parameters, which is done by setting

3E;i E,3y= 0; 1 : 0,1 ... m.

The resulting linear equations are banded since B-splines' have supports which

overlap only partially,i.e.,

3 (W)B Bp(w) = 0,

when p~i-k+2,...,i+k-1.

Inversion and solution for the parameters is computationally easier than the

polynomial case using a power basis.

We next determine the equations of tie time wave form corresponding to this

methoi of fitting the spectrum. While the inverse transform of the general

basis function is rather complicated, we can develop a formulation for

spacific instances.

Let tie knots wi .... wijk be evenly spaced with spacing Di and
c CBi(w), w >O

A i(w) 0,
f CiBi(-w), otherwise.

Then, using the convolutional propertry of uniformly spaced B-splines and the

corvclutional property of Fourier transforms yields
F' (Ai(w) ]:(D:/2)K k in(Diw/2/iw/2) k  (3)

)aiccs wi+ 2t + bisin wi+2t)

isiPot wist

Tn;s, if a'l the knots have spacing D the estimate of s(tpt) is

X;Ea.:cs,i+2)Dt + b.sin(i+2)Dt.

. . ... " .... . . " , i ri I I .. .:
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A decaying high order trignometric polynomial with fundamental frequency D is

the resulting signal. More interesting cases occur when the spacing is

nonuniform. This feature allows a much closer fit in frequency ranges

selectively determined to be more important to the intelligibility of the

signal, and has some resemblances to selective LPC while insuring the degree

of continuity desired. The simplest case uses sections of uniformly spaced

knots with different spacing in each section. The inverse transforms of the

transition A(w)'s will not have the simple form derived above, but the

contributions of the others to the synthetic waveform are sums of decaying

trignometric polynomials with different fundamental frequencies and different

rates of decay. It is postulated that these parametrized waveforms carry

signal information in a form faithful to the original.

APPLICATIONS

This general class of methods has not yet been widely tested or developed.

However, it has been applied to a variety of selective speech signals to test

for intelligibility and faithfulness in the presence of multiple speakers,

female speakers, and noise at various levels, as well as on clear speech.

Figures 1-4 illustrate a sequence from a voiced signal sampled at 10 kh. In

each of the figures the one on the left is from the original signal, while

that on the right is from the synthetic signal. Further testing to determine

good knot locations and nunber of parameters desirable for various

applications seem worthwhile, including gaining further information about the

phase of the signal.
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